IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 1, JANUARY 2001 177

Full-Wave Analysis of Nonplanar Transmission Lines
on Layered Medium by Means of MPIE and
Complex Image Theory
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Abstract—in this paper, a multiconductor transmission line to some particular structures. However, if suitable Green’s
consisting of arbitrary cross-sectional perfect conductors printed functions are available, integral-equation methods are expected
on a layered isotropic or uniaxial anisotropic dielectric medium to be more accurate and less time consuming than any other

is analyzed by solving the mixed-potential integral equation for L .
the free-surface currents. Closed-form expressions of the two-di- method. This is the case for conductors embedded in layered

mensional space-domain Green’s functions for the electrodynamic Media, for which spectral-domain Green’s functions can be
potentials are used. These expressions are obtained by applyingobtained in closed form. In this way, Michalstd al. analyzed

the complex image technique to the spectral functions remaining transmission lines with arbitrary cross-sectional conductors on
after removing the asymptotic and pole contributions from the a single-layer substrate by using the mixed-potential integral

original Green'’s functions. A single set of complex images is f T . . .
obtained for any guess value of the unknown propagation constant equation (MPIE) formulation in conjunction with the method

and for any pair of sourceffield points. In addition, the reaction ~Of moments [10]. In that paper, the spectral-domain Green’s
integrals involved in the application of the method of moments functions were transformed into the space domain by means of
are worked out in a quasi-analytical way. The final result is an numerical integration. Later on, different formulations of the

accurate and highly efficient computation code for analyzing  gpectral-domain approach have been employed for studying the
muilticonductor structures printed on a layered medium. influence of the metallization thickness on single and coupled
Index Terms—Complex image method, integral equations, lay- strip lines and microstrip structures [11]-[13]. These papers
ered media, nonplanar transmission lines. consider parallel conductors of rectangular shape. The inte-
gral-equation method in space and spectral domains has also

I. INTRODUCTION been successfully employed for investigating the propagation

HE analysis of multiconductor transmission lines rinteié] transmission lines of more complicated conductor cross
y P sections embedded in multilayer substrates [14], [15].

on layered substrates has been a popular research topi . . A
. : i i h this paper, a fast and accurate technique is proposed for
for a long time due to the importance of this physical system . . . . .
analyzing open arbitrary cross-sectional multiconductor lines

Inra\,::g%lijrscul?tr:cﬁf?:_:‘pgélg?rt:g;ibr:?ggg "E% rgféog;lsgztg}ﬁ&rinted on a layered substrate. This structure is shown in Fig. 1.
9 , Ign-sp ’ ﬁe dielectric substrate consists 8f dielectric layers, which

technolo 2]. Highly efficient and accurate analysis tools L . ) . . . .
have beg% Ej(lvelo%e():i/ for the particular and impgrtant canay be uniaxially anisotropic (havingzadirected optical axis).

; .~ "The method in this paper starts from the mixed-potential in-
of planar conductors both under quasi-TEM approximatign . o .
. . egral-equation (MPIE) formulation in the space domain [16],
[3] and rigorous full-wave analysis [4]. However, nonplan

conductors must be considered in many practical situatio & /1-[19]. The key contribution of our approach lies on the way

Rectangular and trapezoidal cross sections should be congﬁ 9btammg_ the. kernel of the |.ntegre.1I equation: a very accu-
X . S L . Tate approximation of the two-dimensional (2-D) space-domain
ered, for instance, in transmission lines appearing in monohth&:

integrated circuits or high-speed interconnects. Tightly coupl?cfeen s functions for the scalar and vector potentials is obtained

. o ; ; or any sourceffield point pair in closed form. To accomplish
strips must be analyzed by considering their nonzero thicknegs. : . :

. . 15, the complex image method is employed. This method was
In general, a computer code capable of analyzing transmission

. . A ) roposed in [20] to carry out the closed-form evaluation of the
lines having general cross-sectional conductors may find m

applications. Such a code can be developed on the basis c){'nmerfeld integrals arising from the analysis of radiating ob-

: O : .{ects embedded in a layered medium. The complex image con-
purely numerical methods such as finite elements [5] or finité : S .
cept has been applied to transmission-line problems in the frame

differences [6]. Other techniques, such as the mode-matchi . .
: ; he quasi-TEM approach [3]. Very recently, it has also been
method [7], [8] or the method of lines [9] can be applie .
used by the authors for the full-wave analysis of planar trans-

mission lines [21], [22]. In this paper, we propose to apply com-
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e, surface current on thith conductor. If the traditional Sommer-
z 1 <:> e N feld’s formulation for the vector potential is used (formulation
Yy [ ] C in [23]), we can write
[= [
; Az, ) = / KAz, 2o, 2 )0 dl @)
. Lg
£, hi q
L ,)”V : By, ) = / K%z, 22, ) (V53R I0)dl (3)
L; w

Fig. 1. Cross section of the structure under analyais. conductors of Where p”m_ed quam'tfs_ stand for source coordinates. The form
arbitrary cross section above a grounded multilayer dielectric slab. of the dyadic kerneK** is

A A
extracted out. In this way, a single set of images is enough to KA = Kg“” KOA Ing ' (4)
provide a very accurate description of the Green’s functions for o KA Kaff KA
any pair of sourceffield points and for any guess value of the un- S
known complex propagation constant. Therefore, the repeai®al alternative formulation reported in [23] gives rise to fewer
evaluation of the Green's functions for different source and fieltbnzero terms if** provided the conductors are embedded in
points combinations and for different values of the propagatiensingle layer. Nevertheless, the use of such formulation does
constant (eigenvalue search process) is performed in a very fast add advantages in the frame of the approach used in this
way. Itis demonstrated in this paper that if the surface-wave pglaper because the total number of functions to be approximated
contribution is meaningful and is not extracted out, compleja complex images is the same. Thus, we adopt the classical
images provide a poor approximation of the Green’s functioformulation.
Due to this reason, this paper provides an efficient quasi-analyt-
ical method for computing the surface-wave contribution to th®.  Spectral-Domain Kernel

space-domain kernel of the integral equation. This equation iSlt is well known that it is feasible to obtain closed-form ex-
A

fmglly solved by means of thg method of mqmer!ts. !t mUSt,thfessions fol<* and K® in the spectral domain (namel
pointed out that the contribution of the logarithmic singularit

AndK?) by using a transmission-line network analog of the lay-
of the kernel to the moment-method integrals has been anal 3 )by g g y

. . - Wed medium [14], [24], [23]. For the problem treated here, itis
cally evaluated so as to keep a high overall numerical eﬁ'c'en%nvenient to write the kernel in the following form:

% j —ug|z—2 7 —ug (242
Il. FORMULATION OF THE PROBLEM K®(kylz, #) = I [e ol===l L ok, )e o=+ )}
WEQUD
Let us consider the open multiconductor system shown in . (5)
Fig. 1, which consists aN.. perfect electric conductors of ar- K\ (k|z,2') = Kz (kp|z,2')
bitrary cross section placed above a stratified substrate made of Jwp , . ,
) - . i . - _ 0 6—u0|z—z | + Facac(k )e—ug (z42")
N dielectric layers. The layers are lossless isotropic or uniaxial 2uy I
anisotropic dielectrics witl-directed optical axis and they are (6)

assumed to be of infinite extent along thelirection. The strat- | N JWHO [ et L e (42
ified substrate is coated by an infinite perfect conductor groundfz= (kplz, 2') = e [C 0 + F*(kp)e ™ }
plane. Since we are interested in modes propagating along the @)
y-direction, we assume a common phase faetdr for fields =4 , =4

: . — K. (kplz, 2) =K, (k,
and currentsy being the unknown propagation constant. By en- = #= w/ﬁ) " )
forcing the boundary condition for the tangential electric field = Z—kxF”(/fp)G_“O (=+=)
at the surface of the conductors, we obtain an electric-field inte- o

2, 2

gral equation (EFIE). The kernel of this EFIE has a severe sin- . , - , (®)
gularity that makes it difficult to apply the method of moments K= (kplz, 27) = K2, (k,|z, 2)
[16]. However, the MPIE formulation involves a kernel having _ ﬁf(A (|2, 2') )
a weaker singularity [16], [17], [19] I
) whereuo = /k2 — k3 andk? = k2 + 3* (k. andj3 are the
e . . Cartesian spectral variables, dnghe radial polar spectral vari-
tn X 2 {JWAi(x’ 2+ (Vi=yiP) q)i(x’z)} =0, able). The functiong™ (ii stands fol, zx, 2z or z) have the
(@.2)€L,(G=1, -, N.) 1) following form:
. . oD 1 25 A 2 e
wherei,, is an outward unit vector normal to the boundary Fo(kp) = = <k0 " +ug ) (10)
of thejth conductorV, is the transverse operator nabla, a@nd L

and®; are the electrodynamic potentials generated by the free F“’“’(k,,) -Tn (12)
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Fw(k ) = U_(QJ‘F;L {1+ U’_% Te (12) in an efficient way using such a procedure. The solution pro-
o kg k% posed in this paper is to approximate only th& functions
. Uy (=), . (10)—(13) as a sum of complex exponential functions, and not
(k) = 15 < r“-r ) (13)  the whole Green’s functions. Thus, the dependence amd '
4

of the Green'’s functions remains explicit. The underlying idea
T’ andT ¢ being the voltage reflection coefficient of the transi—S t(.) an_alytiqally pe.rform the integration (14) by using the fol-
mission-line analog, such as described in [23]. SuperscéiptéowIng identity [29]
and/ refers to TM and TE equivalent networks, respectively. 1 [ —/ki+a?

An important feature of the functions in (5)—(9) is the press - e
ence of branch points &}, = +kq. These branch points are re- TS Wzt
lated to the free-space unbounded upper layer of the structure. — EKO (a (x—2/)2 + 72) (15)
The Riemann surfacBe{uo} > 0 of the complexk,-plane @
must be chosen when computibg* and K in the space do- wherek(-) is the zeroth-order modified Bessel function of the
main so as to avoid increasing exponential functions. The fungecond kind and? = 3% — k2 is supposed to be positive in the
tions in (5)—(9) may also have a finite number of poles in theound (nonleaky) regime. Expression (15) can be regarded as
real axis of thes,-plane. These poles represent the propagatigiie 2-D Sommerfeld identity. This identity makes it possible to
constants of the surface-wave modes of the structure in the gdadily obtain the spatial version of the term with the- 2’| de-
sence of sources. THe&* (k,) functions in (10)—(13) exhibit the pendence in the functions (5)—(7). The problem would be com-
same complex plane topology. This latter point will play an inpletely solved if we had a mean to analytically obtain the spa-
portant role in the development of our numerical approach. tjal-domain counterpart of the remaining of the spectral func-

] tions (5)—(7) and the functions (8) and (9). In order to simplify

B. Space-Domain Kernel the formulation, these functions can be represented by a gener-

Once the spectral version of the integral-equation kernelaized spectral function having the following form:
known, its 2-D space-domain counterpart can be obtained car-

gk — /
e Ikalz—'] dk

e~ U0 (z+2")

rying out the following spectral integral (inverse Fourier trans- gz‘z‘(W, 2 = Ciiﬁii(kp) - (16)
form): Uo
1 7 . where the superscript; take the valuesb, zx, 2 or zz,
G|z — 2|, 2|7) = 2—/ e~k 1P =Gk |2, /) dk,.  whereasC" is a frequency-dependent parameter whose form
T /o0 (14) depends on the value of this superscript.

G andG being the generic spatial and spectral representationdt Should be noted that the generalized spectral function (16)
of K or any element oK. Straightforward numerical inte- does not actually represent tf&, (8) element oK™ due to
gration in (14) is not advisable due to the oscillatory and slowH€ explicit presence of &, factor in this term. However, it is
decaying integrands. Special techniques must be used to g&identfrom (14) that the spatial versionigf’, can be obtained
form such numerical integrations [17]. However, the integran@ deriving respect th: —2'| the spatial version &k Z;, /... The
depend o3 in a complicated form. Therefore, such integralh’ﬂtef expression does fit the form of the generalized spectral
should be evaluated for each guess value of the propagation dfiction (16). In this way, the problem reduces to obtain the
stant in the eigenvalue search process. spatial counterpart of (16) in a efficient way.

In this paper, we describe an approach to perform the spectraln Principle, (15) could also be used to perform the integration
integration in closed form. The method is based on the complebd) for 5* once we have approximated the* functions with
image technique. The complex image method has already b68APlex images. However, before proceeding in this manner, it
successfully used for the analysis of planar circuits, antennisnecessary to extract out froft* their asymptotic behavior
and scattering problems [20], [25]-[27]. The authors have far k., > ko and the contribution of the surface-wave poles so
cently adapted this technique to analyze guidance in strictjat the compleximages can properly approximate the functions
planar structures [21], [22]. In [21] and [22], the surface wavg2], [27]. This poses a problem since the calculation of the
poles and the quasi-static behavior were removed from the Spggectral integral for the surface-wave terms cannot be carried out
tral Green’s functions, and the remaining part was approximat@¥ using (15) or the approach in [22]. In this paper, an efficient
by using a finite number of images of the fors(c”" /u,), Procedure is presented to overcome this difficulty.
where A and~ were determined by means of the generalized BY applying the outlined method; (%) in (16) can be ex-
pencil of function (GPoF) [28]. A closed-form expression foPressed in the following approximated form:
the space-domain Green’s function was obtained in the form SN L i T i
of a short expansion. Moreover, this expression was an explicit F(kp) m BT (Rp) + By (Bp) + B 17
function of 3, thus avoiding the need for successive image evaihere i are the large argument >> k) approximation of
uations in the root-searching process. This approach cannotibe, £'ii are the surface-wave contributions, drfd are the parts

applied to the problem treated here since the resulting approgfthe 7 functions to be approximated with complex images.
mated Green'’s functions do not include the explicit dependenlgging this procedure§? can be written as

on thez and:’ variables. Therefore, transmission lines having - S
conductors with arbitrary cross section could not be analyzed S"(kplz, 2') = ST + 5, + 57 (18)
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In the following, these terms will be described and their contrivhere N is the number of poles in the functid{’, k,,, is the

butions to the spatial-domain kernel will be computed. location of thepth pole in thek,-plane, andR;j is the residue
_ 1) Asymptotic Contribution:When the asymptotic limit of of the F% function at the polé,,. The residuel?.jj can be cal-
F" for k, — oo is different from zero, there are problemsulated by using the Cauchy’s theorem

in the direct application of complex image technique for the

approximation ofF™ since the complex image terms tend to R = = ¢ Fik,)dk, (22)

zero whenk, — co. In that case, the asymptotic limit @i, P ory

which have been referred to &3¢, should be always extracted

out from F# before applying the complex image scheme. B\fyhere the contgur integral in (22) .follows a path enc!osing the
taking the limitk, — oo in theﬁii(kp) functions, we get pole atk,,,. This integral can be easily performed by using Gauss
guadratures. Five or ten quadrature points are enough for our

F=r F*=0 F=2x F*=0 purposes. It is worth noting that this residue Qalculati_on ha_ls been
carried out in the:,-plane. Consequently, tH& value is valid,
where for a given frequency, throughout the entire root search process.
As a consequence, the CPU time consumption of this step is not
o LT VENEN important for the overall procedure.
1+ /Enen, The spatial counterpart of (21) is then obtained by proper

g¢n, ande_ n, being the relative permittivities of th&;th layer spectral integration ok, (14)

in directions perpendicular and parallel to thexis, respec- N
Q

tively. The form of the spectraf’ term is then S;f(a:, 2|, #) = Ci Z2Rﬁk,,plp(a:, Ao, ). (23)
o e ue(FE) p=l
Siikylz, 2) = C R . (19) . |
Uo Therefore, the problem reduces to the computation of the inte-
This function can be easily transformed into the spatial doma‘-i’l’ial Ip
by using (15), thus obtaining L /Oo e—ikala—a'] y—uo(s+s") " o
Sii(x, 2|2’ /') = CUFI K, (a\/(x — 221 (21 z’)2) ] P ) e K24 62 Ug ’

20 . L
(20) wheres, = 3% — ks supposed to be positive in the bound

2) Surface-Wave TermThe complex exponential functions(nonleaky) regime. Parseval’'s theorem allows us to rewrite (24)
in the following form:

are not suitable to reproduce the decaying behavior associatedto
the poles of the Green'’s functions. Itis then advisable to remove 1 [ T
these poles before obtaining the complex images, at leastwhen I = 6_/ Ko (a\/ 2 4 C2) etl=Xlgt  (25)
the frequency is high enough to make their influence nonnegli- plmee

gible. The poles appearing in the spectral Green'’s functions ifere o2 — B2 —kE = (2+7), andX = |x — o/|. As

also present in thé™(k, ) functions. _ far as the authors know, no closed-form solution is available for
The first step to remove the influence of these poles is [95) Fortunately, fast numerical evaluation is possible once the

locate them for each frequency value. This could be done Ryyarithmic singularity offco(-) is extracted out. The singular

searching for the zeros of the transverse resonant conditioggy of the integral is analytically evaluated, whereas the regular

7°+ 7 =0(TMmodes)andZ "+ Z" = 0 (TE modes). In part is amenable to be calculated by using low-order Laguerre

these expression§ and Z are the input impedances lookingquadratures (see Appendix A).

to the left- and right-hand side, respectively, from an arbitrary It should be pointed out that (24) only depends on the location

point inside the layered medium. However, searching for tiééthe pole and, therefore, it is the same for all the spectral func-

roots of the transverse resonant conditions is not a simple taéns (5)—(9), except fok -,. To evaluate the contribution of this

since a pole of these expressions may be very close to a z&éeo, it is necessary to derivg (24) with respect tdz — z'|.

thus making the numerical search difficult. We have then enihe detailed evaluation af, and its derivative with respect to

ployed an alternative method described in [30]: the location 6f — 2’|, I, is treated in Appendixes A and B.

the poles is obtained by performing a root search over a specific3) Complex Images TermOnce the asymptotic and sur-

analytic complex function having no poles or branch points. face-wave terms of the spectral functions have been removed,
Once the poles are located, we have to extract out its con@ifinite sum of complex images can be used to approximate

bution to the spectral function. Since the spectral functions dhe remaining part. The images are computed by means of the

even functions of;,, the poles always appear in pairs, and we&PoF method [28]

can write for the generalizeﬁjj(kp|z, Z') function

Nid
e U0 (z+2' 0

]\Tm' ..
SRk Fi(ky) = F¥ (k) = Fi(ky) = Fyf D e
L (21) i=t

L . )
Szz(k |27 2’/) — sz
r wo k- k, (26)
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where N is the number of complex images employed to ajgs. Solving the Integral Equation
proximateF'i*. The approximated’® give rise to the following

‘ o X Once the space-domain kernel is known, the method of mo-
approximateds’* functions:

ments is used to solve for the integral equation. The cross-sec-
tional contours of the conductors have been approximated by
Ni ety Y piecewise linear segment's, apd the unknown gurrent§ have been
Si(k,|z, 2) ~ C Z a;‘;‘@ M (27) expressed as an expansion into a set of basis functions whose
Uo coefficients have to be determined. Pulse functions have been
used to approximate the axial component of the surface current
As a final result, the remaining spectral Green'’s functions hadensity ¢;-component) and triangle functions for the transverse
been expanded into a sum of terms representing cylindricaimponents{ andz components). The reader is referred to [14]
waves in the spectral domain. These are the type of functidosfind a detailed formulation of the application of the method
obtained if we analyze our problem after substituting the dif moments with this kind of basis functions. It is worth men-
electric layers for vacuum. Therefore, it is physically expectdwning that we have used a nonuniform distribution of the basis
that just a few images will suffice to provide an excellenfunctions in each face of the conductors. The basis functions
approximation of the desired spectral function. Using (15), weve been concentrated near the edges in order to reproduce in

i=1

can write for the space-domain version of (27) a better way the fast variations of the current density in those
regions.

i . The application of the method of moments implies the inte-

St (w2l 2) gration of the kernel of the integral equation over straight seg-

CNeo - ments on the cross section of the conductors (reaction integrals).
~C" Z a;' Ko <a\/(a:—a:’)2+(z+z’+fy;])2> . (28) To improve the efficiency and accuracy of the method, the log-
arithmic singularity of the kernel has been separately treated
3 . and its contribution analytically obtained. The remaining reg-
In order to apply the GPoF for obtaining’ and~;" in (26), ylar contribution to the reaction integrals has been evaluated
we have sampled the spectral functions along a path in {fth very low computational effort: no more than two or three

k,-plane, which is similar to that suggested in [31] for approxisauss—Legendre quadrature points have been found to be nec-
mating three-dimensional (3-D) Green'’s functions. When usiRgsary for every integral.

this approximation in our 2-D problem, the path in heplane
maps into different paths in thie,-plane as3 changes in the
root searching process. These latter paths do not coincide with
the real axis of thé:,-plane. According to (14), the value of The performance of our approach will be primarily deter-
G(k,|z, z')—and, therefore, the value & (k,)—is required mined by the quality of the approximation of the kernel of the
along the real axis of thg,.-plane. It may be thought that ourintegral equation. In order to investigate this issue, let us focus
procedure is not correct because the approximating functiondar attention on a simple dielectric configuration involving all
the k.-plane has been obtained along a different path on thhe elements of the reported method: a single dielectric slab over
plane. However, since the spectral functidrig(k,) have no a ground plane. We are first interested in showing the accuracy
poles, analytic continuation can be invoked to justify that thesé our method and the convenience of removing pole contribu-
functions are also valid along the real axis of theplane. tions before applying the GPoF. Consider a slab thickness of
This issue has been numerically verified and accurate results= 0.635 mm and a relative dielectric constantgf = 9.8.
have been obtained for the approximatiorﬁtﬁf(kp) along the The source point is located at = 0 (i.e., at the dielectric
k.-plane real axis for many different values/afSince a single interface) and the field point at = 0.3 mm. We have com-
set of complex images is used in the approximatiod'i{%,) puted the elements of the kernel in the space domain for the
for any value of/3, important CPU time savings are achievefrequenciesf = 10 GHz andf = 30 GHz. At such frequen-
in the root search process necessary for the determinatiorciafs, the spectral-domain kernel has a surface Vilavg pole
the propagation constants. This is an additional and essendibk, ~ 1.007k, andk, =~ 1.2k, respectively. In Fig. 2, we
advantage of our approach. compare the direct numerical integration method (which com-
A crucial point that makes the approximation of the spectrhines the Romberg and the weighted averages techniques [17])
functions work properly is that botﬁ“}"'(k,)) and the complex against the method in this paper. The solid line of Fig. 2(a)
image terms present the same branch points, at +ko. The shows|K®(|z — /|, z, 2)| for f = 10 GHz as a function of
use of different branch points in the complex image terms afhd — 2’| (direct integration results). The relative difference be-
in the spectral functions to be approximated leads to very pdereen these data and the values computed with our approach
quality approximations, as explained in [27]. (using eight complex images) is also depicted in that figure. We
Also, note that there are reasons to think that the complbave included the discrepancy existing between numerical and
images are particularly suitable to accurately approximate theasi-analytical data both, when the surface wave pole is re-
spectral functions, since they give rise to terms representingpved before computing the complex images and when it is
cylindrical waves in the spectral domain. This is the kind afot removed. We can see that the quality of the approximation
functions expected if we consider that the influence of the sus-slightly better if the pole is removed. The impact of extracting
face wave has been separately treated. the pole increases witl: — z’| because the dominant far field

i=1

I1l. NUMERICAL RESULTS
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@ Fig. 3. Dispersion curve of the fundamental mode of the thick microstrip
structure of the figure. Two different conductor cross section are considered.

1o’ (h = 0.635 mm,w = 3 mm,7 = 0.3 mm, e, = 9.8).

i As a first example of the application of the code based

on the theory in this paper, we have analyzed the structure
- 107 depicted in Fig. 3, i.e., a thick microstrip printed over the
substrate used in the example in Fig. 2. The thickness of the
conductor ist = 0.3 mm. Fig. 3 shows the dispersion curves
of the fundamental mode of this microstrip structure when the
conductor is considered rectangular=€ 90°) and trapezoidal
51 * Voo [ (¢ = 45°). Results for this structure have been previously
.. o%ee® published in [10] (for a narrower range of frequencies) and [15].
7 o et - 107 The former makes use of a space-domain MPIE formulation,
ceoeenessensss®®’ but the spectral integrals are numerically computed. The latter
Y : , : L 4os uses a boundary integral-equation technique in conjunction
2.0 -1.5 -1.0 -0.5 00 with the method of moments. The results provided in [15]
Log(jx-X'[/A) are included in Fig. 3 (they are very close to those reported
®) in [10]). The agreement with our results is very good. In
[10], results are also presented for the particular dase0
Fig. 2. Magnitude of K¢ (solid line) and relative difference between MM (infinitely thin microstrip). The fundamental and higher
numerical integration computation and complex images computation withodes in the bound regime for such case have been also
(black dots) and without pole extraction (whrite dots) for: (a) 10 GHz and (%produced with our code.
30 GHz. Data” = 0.635 mm,e,, = 9.8,z = 0, andz’ = 0.3 mm. . -
A structure printed on the same substrate and containing two
coupled thick strips has been also analyzed in [15]. This struc-
associated to the surface waves cannot be properly reprodutted is shown in Fig. 4. The dispersion curves for the propagation
only by the complex images. Anyway, both approaches providenstants of the even and odd modes are plotted there. The data
an acceptable error level all over the range of distances for whigported in [15] are also included for comparison and excellent
the approximated function is not negligible. However, for highergreement has been found. Axial and transverse components of
frequencies, the situation dramatically changes. Fig. 2(b) shothie current densities have been modeled by ten pulse and tri-
the same curves that in Fig. 2(a), but for a different frequenangle functions, respectively, over each conductor.
/ = 30 GHz. In this case, it is obvious that the pole extrac- Itis worth mentioning that the results presented in Figs. 3 and
tion is essential to keep the error below a reasonable level. Thean be obtained only if the surface-wave pole contribution is
poor results obtained when poles are not extracted affects to temoved before using complex images. Otherwise, results be-
whole range of source-field point distances. Although we hageme unstable when frequency increases, since the surface wave
only shown results fok ®, the same conclusions can be appliedoles contribution becomes important. In the particular example
to all the elements of the kernel of our integral equation, as teidied here, this occurs wher> 30 GHz for the first surface
authors have explicitly verified from many numerical tests. Weave pole TM,) and whenf > 48 GHz for the second pole
have also repeated these tests for different valuesnflz’ and (TE;). Subsequent poles are important above 100 GHz.
for more complex dielectric configurations. The conclusions are To illustrate the performance of the method when dealing
identical. with wire transmission lines, the results reported in [15] for

(e}
o
00009 - 102

log|K?|

-5 1 ocoo00000

Relative error
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Fig. 4. Propagation constant as a function of frequency for the even and odd frequency (GHz)
mode of two coupled microstrips. Data:= 0.635 mm,w = 1 mm,¢ = 0.3
mm, e, = 9.8. Fig. 6. Dispersion curves of the three fundamental modes of the

transmission-line configurations (a)-(c) in [14, Fig. 8]. Symbols for
every configuration: our results fonode 1 solid line; results from [14]: white
1.7 squares. Our results fanode 2 dashed line; results from [14]: white triangles.
Our result formode 3 dots and dashes; results from [14]: white diamonds.
Quasi-static results obtained with the method reported in [3] are also included:
mode 1: grey squares; mode 2: grey triangles; mode 3: grey diamonds.

0 Olyslager et al. [15]
16 1 Our results

rily with ours. The low-frequency limit of the dispersion curves
have been checked against the results obtained by a highly ac-
curate quasi-TEM code [3] with very good agreement.

Finally, let us write a few words about CPU time consump-
tion. As it has been mentioned in this sectionaarhocnumer-
ical integration scheme for obtaining the space-domain kernel
of the MPIE has been programmed so as to check the proposed
method. Although the numerical scheme takes into account the
special features of the integrands, for a given level of accuracy,
CPU times are always much shorter if the approach in this paper
is used. CPU time saving with respect numerical integration is
more relevant when the structure becomes more and more com-
plex. For the examples studied here, a reduction factor in CPU

Fig. 5. Dispersion curve for the fundamental mode of the structure in tljigne above ten has been found for all the cases.
figure. Datath = 3 mm,a = 0.75 mm,e, = 4, H = 4.5 mm.

Bk,

frequency (GHz)

IV. CONCLUSIONS

the fundamental mode of the wire transmission line depicted inin this paper, the complex image method, originally intended
Fig. 5 have been reproduced with our code. The circular cdior 3-D problems, has been successfully adapted to handle the
ductor has been approximated by an hexagon with the sagwedance problem of open transmission lines with arbitrary
area. The axial component of the surface current density laess-sectional conductors on a layered substrate. It has been
been modeled with ten pulse functions. Results are plottedgroven that the correct performance of this technique in all
Fig. 5 along with those reported in [15]. An excellent agreemetite range of frequencies requires to treat separately the sur-
is observed once again. face-wave contribution of the kernel of the integral equation.
As a final example, let us consider the three-conductor tramsa efficient method has been presented to take into account this
mission line studied by Hsat al. in [14] by using the MPIE surface-wave contribution. These ideas have been implemented
scheme with numerical evaluation of the spectral integrals [lidfo a MPIE formulation to solve for the multiconductor
Fig. 8]. Three different conductor cross sections are considergdoblem. Nonuniform discretization is incorporated so as to
trapezoidal, rectangular, and inverted trapezoidal. Fig. 6 shomimimize the size of the matrix of moments. The calculation
the dispersion curves of the three fundamental modes suppotédach element of this matrix has been also speeded up thanks
by each three conductor system. Twelve basis functions otera quasi-analytical evaluation of the reaction integrals. The
each conductor have been used to obtain those results. Fig. 6 atsoputer code based on this theory has been conveniently
includes the results reported in [14], which agree very satisfactdiecked against canonical examples published on the literature
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and against results provided by a computer code based on lthéhis way, I, in (31) is evaluated in closed form. In order to
computation of the MPIE kernel by direct numerical integrezalculate the integral,, we express this integrand in a form
tion. This program has made it possible to verify the relativemenable to apply Laguerre quadratures

accuracy and numerical efficiency of the proposed approach / T
F(t)e
APPENDIX A oo v
We are faced with the problem of calculatifigin (25). This =5 {/0 f< - g) - d“+/0 f <X+g> e d“}
integral turns out to be the convolution of a exponential function v (36)

with a zeroth-order modified Bessel function of the second kind.
The modified Bessel function has a logarithmic singularity iwhere

the origin that should be removed as follows: Ft) = Ko (a\/tQJF—CQ) +log (Oé\/t“r—CQ) ' 37)

Iy =11, (29) Since the integrand in (36) is smooth, only five or ten Laguerre
where quadrature points suffice to obtain accurate resultg foSum-
ming up, thel, integral can be calculated in a efficient quasi-

Ia:(si/_o; [Ko (a\/tQJr—C?) closed form.

Hog (a\/m)} =0 1=X1 gt APPENDIX B
(30) Here, the evaluation of the following integral:
1 [ 5 I R
_ - 2 2\ —6,lt—X]| 0 p=dkalo—a'| o—uo(z+2")
I, 5 [m log (a\/t +<¢ )e dt. (31) I :/ k.. e ” dk, (38)

The integrand in (31) includes the singularity &%(-) and, s explained. This integral is necessary for the computation of

therefore, it is advisable to avoid the numerical evaluation g{A (|l — x /). From (24), it is clear thaf’, can be ex-

that integral. Splitting the integrdl, into two terms to elimi- pressed a) —J(d_[ )/(dX), whereX = |z — x/f’ To perform

nate the module in the argument of the exponential function affls gerivation over the convolution form df, (25), the inte-
changing variables), can be rewritten as grand must be split into two terms to avoid the presence of the
5 module in the argument of the exponential function
L= [ s (oG P E) e

X
I,= %/ Ko (m/t2+c2) e~ (X gy
—/ log (u+ X)? CQ) e~ du.  (32) P J—o0 -
+6i / Ko (m/t2+c2) e~ gt (39)
P JX

I, can now be calculated by deriving the expression above

If use is made of the following result [29]:

e 1
/ log(z + b)e™ %" dx = —{logb - e‘SPbEi(—épb)}
0 6

X
p (33) I;) - _J/ Ko (O‘\/tQ‘F—’YQ) e~ (X=1) gy

wherekE; is the exponential integral function, the integfatan 4 /Oo Ko (a2 +2) et g (40
be written in the following form: J x 0 ( ¢ ) (40)
1 The integrall;, (40) is split into two integrals having the same
I 21 HXP4 ) — e - i i i
b= 262 Og( form as those in (39). This makes it possible to use the results
ics _ics ) obtained in Appendix A fot,, to calculate/,,. Extracting out
[ B (6,(X = 5O)) + e Ei(6,(X + )] again the logarithmic singularity of the modified Bessel func-
— X [P Ei(6(—X — 4Q)) tion, we can write

+e IO E(S(-X 45O [ (34) L=1.-1 (41)
where

Assuming thab, is a real variable (this is true only if we are
searching for real values of the propagation constant), we an._J_| 5, ,i¢6, . _ —i¢S . i
9 propag ). we g J [ e B8y (X =00 e B (,(X+0))]

obtain a simpler expression fég P
1 e X [ Ey(8p(— X =€)
Ib (52 |:108( (X + C )) _’_ijC(SpEi(ép(_X_’_jC))] :| . (42)

_‘5 X J<6PE —
Re{e (0p(X JO)} Note thatl] (42) does not require new numeric calculation of the
5 X ics . exponential and exponential integral functions since the terms
—PR{JPE“S—X— } 35 . . er
© ¢ (& i) } (35) already calculated in (34) can be easily reused here. In a similar
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way, a new application of the Laguerre quadratures is not necegs)
sary to calculatd,, sincel!, is split into the same two integrals
appearing in the computation &f. Hence, no additional com-
putation effort is necessary to perform the integration (38) oncei6]
(25) has been calculated.
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