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Full-Wave Analysis of Nonplanar Transmission Lines
on Layered Medium by Means of MPIE and

Complex Image Theory
Joaquin Bernal, Francisco Medina, Member, IEEE, and Rafael R. Boix, Member, IEEE

Abstract—In this paper, a multiconductor transmission line
consisting of arbitrary cross-sectional perfect conductors printed
on a layered isotropic or uniaxial anisotropic dielectric medium
is analyzed by solving the mixed-potential integral equation for
the free-surface currents. Closed-form expressions of the two-di-
mensional space-domain Green’s functions for the electrodynamic
potentials are used. These expressions are obtained by applying
the complex image technique to the spectral functions remaining
after removing the asymptotic and pole contributions from the
original Green’s functions. A single set of complex images is
obtained for any guess value of the unknown propagation constant
and for any pair of source/field points. In addition, the reaction
integrals involved in the application of the method of moments
are worked out in a quasi-analytical way. The final result is an
accurate and highly efficient computation code for analyzing
multiconductor structures printed on a layered medium.

Index Terms—Complex image method, integral equations, lay-
ered media, nonplanar transmission lines.

I. INTRODUCTION

T HE analysis of multiconductor transmission lines printed
on layered substrates has been a popular research topic

for a long time due to the importance of this physical system
in various practical applications, including microwave inte-
grated circuits, high-speed interconnects [1], and discrete wire
technology [2]. Highly efficient and accurate analysis tools
have been developed for the particular and important case
of planar conductors both under quasi-TEM approximation
[3] and rigorous full-wave analysis [4]. However, nonplanar
conductors must be considered in many practical situations.
Rectangular and trapezoidal cross sections should be consid-
ered, for instance, in transmission lines appearing in monolithic
integrated circuits or high-speed interconnects. Tightly coupled
strips must be analyzed by considering their nonzero thickness.
In general, a computer code capable of analyzing transmission
lines having general cross-sectional conductors may find many
applications. Such a code can be developed on the basis of
purely numerical methods such as finite elements [5] or finite
differences [6]. Other techniques, such as the mode-matching
method [7], [8] or the method of lines [9] can be applied
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to some particular structures. However, if suitable Green’s
functions are available, integral-equation methods are expected
to be more accurate and less time consuming than any other
method. This is the case for conductors embedded in layered
media, for which spectral-domain Green’s functions can be
obtained in closed form. In this way, Michalskiet al.analyzed
transmission lines with arbitrary cross-sectional conductors on
a single-layer substrate by using the mixed-potential integral
equation (MPIE) formulation in conjunction with the method
of moments [10]. In that paper, the spectral-domain Green’s
functions were transformed into the space domain by means of
numerical integration. Later on, different formulations of the
spectral-domain approach have been employed for studying the
influence of the metallization thickness on single and coupled
strip lines and microstrip structures [11]–[13]. These papers
consider parallel conductors of rectangular shape. The inte-
gral-equation method in space and spectral domains has also
been successfully employed for investigating the propagation
in transmission lines of more complicated conductor cross
sections embedded in multilayer substrates [14], [15].

In this paper, a fast and accurate technique is proposed for
analyzing open arbitrary cross-sectional multiconductor lines
printed on a layered substrate. This structure is shown in Fig. 1.
The dielectric substrate consists of dielectric layers, which
may be uniaxially anisotropic (having a-directed optical axis).
The method in this paper starts from the mixed-potential in-
tegral-equation (MPIE) formulation in the space domain [16],
[17]–[19]. The key contribution of our approach lies on the way
of obtaining the kernel of the integral equation: a very accu-
rate approximation of the two-dimensional (2-D) space-domain
Green’s functions for the scalar and vector potentials is obtained
for any source/field point pair in closed form. To accomplish
this, the complex image method is employed. This method was
proposed in [20] to carry out the closed-form evaluation of the
Sommerfeld integrals arising from the analysis of radiating ob-
jects embedded in a layered medium. The complex image con-
cept has been applied to transmission-line problems in the frame
of the quasi-TEM approach [3]. Very recently, it has also been
used by the authors for the full-wave analysis of planar trans-
mission lines [21], [22]. In this paper, we propose to apply com-
plex images to the analysis of nonplanar lines. The straightfor-
ward application of this technique gives place to serious prob-
lems. In order to overcome such difficulties, we propose to use
the complex image method for approximating the Green’s func-
tions once the contributions of the asymptotic behavior and the
surface-wave poles of the spectral Green’s functions have been
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Fig. 1. Cross section of the structure under analysis.N conductors of
arbitrary cross section above a grounded multilayer dielectric slab.

extracted out. In this way, a single set of images is enough to
provide a very accurate description of the Green’s functions for
any pair of source/field points and for any guess value of the un-
known complex propagation constant. Therefore, the repeated
evaluation of the Green’s functions for different source and field
points combinations and for different values of the propagation
constant (eigenvalue search process) is performed in a very fast
way. It is demonstrated in this paper that if the surface-wave pole
contribution is meaningful and is not extracted out, complex
images provide a poor approximation of the Green’s function.
Due to this reason, this paper provides an efficient quasi-analyt-
ical method for computing the surface-wave contribution to the
space-domain kernel of the integral equation. This equation is
finally solved by means of the method of moments. It must be
pointed out that the contribution of the logarithmic singularity
of the kernel to the moment-method integrals has been analyti-
cally evaluated so as to keep a high overall numerical efficiency.

II. FORMULATION OF THE PROBLEM

Let us consider the open multiconductor system shown in
Fig. 1, which consists of perfect electric conductors of ar-
bitrary cross section placed above a stratified substrate made of

dielectric layers. The layers are lossless isotropic or uniaxial
anisotropic dielectrics with-directed optical axis and they are
assumed to be of infinite extent along the-direction. The strat-
ified substrate is coated by an infinite perfect conductor ground
plane. Since we are interested in modes propagating along the
-direction, we assume a common phase factor for fields

and currents, being the unknown propagation constant. By en-
forcing the boundary condition for the tangential electric field
at the surface of the conductors, we obtain an electric-field inte-
gral equation (EFIE). The kernel of this EFIE has a severe sin-
gularity that makes it difficult to apply the method of moments
[16]. However, the MPIE formulation involves a kernel having
a weaker singularity [16], [17], [19]

(1)

where is an outward unit vector normal to the boundary
of the th conductor, is the transverse operator nabla, and
and are the electrodynamic potentials generated by the free

surface current on theth conductor. If the traditional Sommer-
feld’s formulation for the vector potential is used (formulation
C in [23]), we can write

(2)

(3)

where primed quantities stand for source coordinates. The form
of the dyadic kernel is

(4)

An alternative formulation reported in [23] gives rise to fewer
nonzero terms in provided the conductors are embedded in
a single layer. Nevertheless, the use of such formulation does
not add advantages in the frame of the approach used in this
paper because the total number of functions to be approximated
via complex images is the same. Thus, we adopt the classical
formulation.

A. Spectral-Domain Kernel

It is well known that it is feasible to obtain closed-form ex-
pressions for and in the spectral domain (namely,
and ) by using a transmission-line network analog of the lay-
ered medium [14], [24], [23]. For the problem treated here, it is
convenient to write the kernel in the following form:

(5)

(6)

(7)

(8)

(9)

where and ( and are the
Cartesian spectral variables, andthe radial polar spectral vari-
able). The functions ( stands for or ) have the
following form:

(10)

(11)
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(12)

(13)

and being the voltage reflection coefficient of the trans-
mission-line analog, such as described in [23]. Superscripts
and refers to TM and TE equivalent networks, respectively.

An important feature of the functions in (5)–(9) is the pres-
ence of branch points at . These branch points are re-
lated to the free-space unbounded upper layer of the structure.
The Riemann surface of the complex -plane
must be chosen when computing and in the space do-
main so as to avoid increasing exponential functions. The func-
tions in (5)–(9) may also have a finite number of poles in the
real axis of the -plane. These poles represent the propagation
constants of the surface-wave modes of the structure in the ab-
sence of sources. The functions in (10)–(13) exhibit the
same complex plane topology. This latter point will play an im-
portant role in the development of our numerical approach.

B. Space-Domain Kernel

Once the spectral version of the integral-equation kernel is
known, its 2-D space-domain counterpart can be obtained car-
rying out the following spectral integral (inverse Fourier trans-
form):

(14)
and being the generic spatial and spectral representations

of or any element of . Straightforward numerical inte-
gration in (14) is not advisable due to the oscillatory and slowly
decaying integrands. Special techniques must be used to per-
form such numerical integrations [17]. However, the integrands
depend on in a complicated form. Therefore, such integrals
should be evaluated for each guess value of the propagation con-
stant in the eigenvalue search process.

In this paper, we describe an approach to perform the spectral
integration in closed form. The method is based on the complex
image technique. The complex image method has already been
successfully used for the analysis of planar circuits, antennas,
and scattering problems [20], [25]–[27]. The authors have re-
cently adapted this technique to analyze guidance in strictly
planar structures [21], [22]. In [21] and [22], the surface wave
poles and the quasi-static behavior were removed from the spec-
tral Green’s functions, and the remaining part was approximated
by using a finite number of images of the form ,
where and were determined by means of the generalized
pencil of function (GPoF) [28]. A closed-form expression for
the space-domain Green’s function was obtained in the form
of a short expansion. Moreover, this expression was an explicit
function of , thus avoiding the need for successive image eval-
uations in the root-searching process. This approach cannot be
applied to the problem treated here since the resulting approxi-
mated Green’s functions do not include the explicit dependence
on the and variables. Therefore, transmission lines having
conductors with arbitrary cross section could not be analyzed

in an efficient way using such a procedure. The solution pro-
posed in this paper is to approximate only the functions
(10)–(13) as a sum of complex exponential functions, and not
the whole Green’s functions. Thus, the dependence onand
of the Green’s functions remains explicit. The underlying idea
is to analytically perform the integration (14) by using the fol-
lowing identity [29]:

(15)

where is the zeroth-order modified Bessel function of the
second kind and is supposed to be positive in the
bound (nonleaky) regime. Expression (15) can be regarded as
the 2-D Sommerfeld identity. This identity makes it possible to
readily obtain the spatial version of the term with the de-
pendence in the functions (5)–(7). The problem would be com-
pletely solved if we had a mean to analytically obtain the spa-
tial-domain counterpart of the remaining of the spectral func-
tions (5)–(7) and the functions (8) and (9). In order to simplify
the formulation, these functions can be represented by a gener-
alized spectral function having the following form:

(16)

where the superscript take the values or ,
whereas is a frequency-dependent parameter whose form
depends on the value of this superscript.

It should be noted that the generalized spectral function (16)
does not actually represent the (8) element of due to
the explicit presence of a factor in this term. However, it is
evident from (14) that the spatial version of can be obtained
by deriving respect to the spatial version of . The
latter expression does fit the form of the generalized spectral
function (16). In this way, the problem reduces to obtain the
spatial counterpart of (16) in a efficient way.

In principle, (15) could also be used to perform the integration
(14) for once we have approximated the functions with
complex images. However, before proceeding in this manner, it
is necessary to extract out from their asymptotic behavior
for and the contribution of the surface-wave poles so
that the complex images can properly approximate the functions
[22], [27]. This poses a problem since the calculation of the
spectral integral for the surface-wave terms cannot be carried out
by using (15) or the approach in [22]. In this paper, an efficient
procedure is presented to overcome this difficulty.

By applying the outlined method, in (16) can be ex-
pressed in the following approximated form:

(17)

where are the large argument ( ) approximation of
, are the surface-wave contributions, andare the parts

of the functions to be approximated with complex images.
Using this procedure, can be written as

(18)
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In the following, these terms will be described and their contri-
butions to the spatial-domain kernel will be computed.

1) Asymptotic Contribution:When the asymptotic limit of
for is different from zero, there are problems

in the direct application of complex image technique for the
approximation of since the complex image terms tend to
zero when . In that case, the asymptotic limit of ,
which have been referred to as , should be always extracted
out from before applying the complex image scheme. By
taking the limit in the functions, we get

where

and being the relative permittivities of the th layer
in directions perpendicular and parallel to the-axis, respec-
tively. The form of the spectral term is then

(19)

This function can be easily transformed into the spatial domain
by using (15), thus obtaining

(20)

2) Surface-Wave Term:The complex exponential functions
are not suitable to reproduce the decaying behavior associated to
the poles of the Green’s functions. It is then advisable to remove
these poles before obtaining the complex images, at least when
the frequency is high enough to make their influence nonnegli-
gible. The poles appearing in the spectral Green’s functions are
also present in the functions.

The first step to remove the influence of these poles is to
locate them for each frequency value. This could be done by
searching for the zeros of the transverse resonant conditions:

(TM modes) and (TE modes). In

these expressions, and are the input impedances looking
to the left- and right-hand side, respectively, from an arbitrary
point inside the layered medium. However, searching for the
roots of the transverse resonant conditions is not a simple task,
since a pole of these expressions may be very close to a zero,
thus making the numerical search difficult. We have then em-
ployed an alternative method described in [30]: the location of
the poles is obtained by performing a root search over a specific
analytic complex function having no poles or branch points.

Once the poles are located, we have to extract out its contri-
bution to the spectral function. Since the spectral functions are
even functions of , the poles always appear in pairs, and we
can write for the generalized function

(21)

where is the number of poles in the function , is the
location of the th pole in the -plane, and is the residue
of the function at the pole . The residue can be cal-
culated by using the Cauchy’s theorem

(22)

where the contour integral in (22) follows a path enclosing the
pole at . This integral can be easily performed by using Gauss
quadratures. Five or ten quadrature points are enough for our
purposes. It is worth noting that this residue calculation has been
carried out in the -plane. Consequently, the value is valid,
for a given frequency, throughout the entire root search process.
As a consequence, the CPU time consumption of this step is not
important for the overall procedure.

The spatial counterpart of (21) is then obtained by proper
spectral integration on (14)

(23)

Therefore, the problem reduces to the computation of the inte-
gral

(24)

where is supposed to be positive in the bound
(nonleaky) regime. Parseval’s theorem allows us to rewrite (24)
in the following form:

(25)

where , , and . As
far as the authors know, no closed-form solution is available for
(25). Fortunately, fast numerical evaluation is possible once the
logarithmic singularity of is extracted out. The singular
part of the integral is analytically evaluated, whereas the regular
part is amenable to be calculated by using low-order Laguerre
quadratures (see Appendix A).

It should be pointed out that (24) only depends on the location
of the pole and, therefore, it is the same for all the spectral func-
tions (5)–(9), except for . To evaluate the contribution of this
term, it is necessary to derive (24) with respect to .
The detailed evaluation of and its derivative with respect to

, is treated in Appendixes A and B.
3) Complex Images Term:Once the asymptotic and sur-

face-wave terms of the spectral functions have been removed,
a finite sum of complex images can be used to approximate
the remaining part. The images are computed by means of the
GPoF method [28]

(26)
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where is the number of complex images employed to ap-
proximate . The approximated give rise to the following
approximated functions:

(27)

As a final result, the remaining spectral Green’s functions have
been expanded into a sum of terms representing cylindrical
waves in the spectral domain. These are the type of functions
obtained if we analyze our problem after substituting the di-
electric layers for vacuum. Therefore, it is physically expected
that just a few images will suffice to provide an excellent
approximation of the desired spectral function. Using (15), we
can write for the space-domain version of (27)

(28)

In order to apply the GPoF for obtaining and in (26),
we have sampled the spectral functions along a path in the

-plane, which is similar to that suggested in [31] for approxi-
mating three-dimensional (3-D) Green’s functions. When using
this approximation in our 2-D problem, the path in the-plane
maps into different paths in the -plane as changes in the
root searching process. These latter paths do not coincide with
the real axis of the -plane. According to (14), the value of

—and, therefore, the value of —is required
along the real axis of the -plane. It may be thought that our
procedure is not correct because the approximating function in
the -plane has been obtained along a different path on that
plane. However, since the spectral functions have no
poles, analytic continuation can be invoked to justify that these
functions are also valid along the real axis of the-plane.
This issue has been numerically verified and accurate results
have been obtained for the approximation of along the

-plane real axis for many different values of. Since a single
set of complex images is used in the approximation of
for any value of , important CPU time savings are achieved
in the root search process necessary for the determination of
the propagation constants. This is an additional and essential
advantage of our approach.

A crucial point that makes the approximation of the spectral
functions work properly is that both and the complex
image terms present the same branch points at . The
use of different branch points in the complex image terms and
in the spectral functions to be approximated leads to very poor
quality approximations, as explained in [27].

Also, note that there are reasons to think that the complex
images are particularly suitable to accurately approximate the
spectral functions, since they give rise to terms representing
cylindrical waves in the spectral domain. This is the kind of
functions expected if we consider that the influence of the sur-
face wave has been separately treated.

C. Solving the Integral Equation

Once the space-domain kernel is known, the method of mo-
ments is used to solve for the integral equation. The cross-sec-
tional contours of the conductors have been approximated by
piecewise linear segments, and the unknown currents have been
expressed as an expansion into a set of basis functions whose
coefficients have to be determined. Pulse functions have been
used to approximate the axial component of the surface current
density ( -component) and triangle functions for the transverse
components ( and components). The reader is referred to [14]
to find a detailed formulation of the application of the method
of moments with this kind of basis functions. It is worth men-
tioning that we have used a nonuniform distribution of the basis
functions in each face of the conductors. The basis functions
have been concentrated near the edges in order to reproduce in
a better way the fast variations of the current density in those
regions.

The application of the method of moments implies the inte-
gration of the kernel of the integral equation over straight seg-
ments on the cross section of the conductors (reaction integrals).
To improve the efficiency and accuracy of the method, the log-
arithmic singularity of the kernel has been separately treated
and its contribution analytically obtained. The remaining reg-
ular contribution to the reaction integrals has been evaluated
with very low computational effort: no more than two or three
Gauss–Legendre quadrature points have been found to be nec-
essary for every integral.

III. N UMERICAL RESULTS

The performance of our approach will be primarily deter-
mined by the quality of the approximation of the kernel of the
integral equation. In order to investigate this issue, let us focus
our attention on a simple dielectric configuration involving all
the elements of the reported method: a single dielectric slab over
a ground plane. We are first interested in showing the accuracy
of our method and the convenience of removing pole contribu-
tions before applying the GPoF. Consider a slab thickness of

mm and a relative dielectric constant of .
The source point is located at (i.e., at the dielectric
interface) and the field point at mm. We have com-
puted the elements of the kernel in the space domain for the
frequencies GHz and GHz. At such frequen-
cies, the spectral-domain kernel has a surface wave pole
at and , respectively. In Fig. 2, we
compare the direct numerical integration method (which com-
bines the Romberg and the weighted averages techniques [17])
against the method in this paper. The solid line of Fig. 2(a)
shows for GHz as a function of

(direct integration results). The relative difference be-
tween these data and the values computed with our approach
(using eight complex images) is also depicted in that figure. We
have included the discrepancy existing between numerical and
quasi-analytical data both, when the surface wave pole is re-
moved before computing the complex images and when it is
not removed. We can see that the quality of the approximation
is slightly better if the pole is removed. The impact of extracting
the pole increases with because the dominant far field
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(a)

(b)

Fig. 2. Magnitude ofK (solid line) and relative difference between
numerical integration computation and complex images computation with
(black dots) and without pole extraction (white dots) for: (a) 10 GHz and (b)
30 GHz. Data:h = 0:635 mm," = 9:8, z = 0, andz = 0:3 mm.

associated to the surface waves cannot be properly reproduced
only by the complex images. Anyway, both approaches provide
an acceptable error level all over the range of distances for which
the approximated function is not negligible. However, for higher
frequencies, the situation dramatically changes. Fig. 2(b) shows
the same curves that in Fig. 2(a), but for a different frequency

GHz. In this case, it is obvious that the pole extrac-
tion is essential to keep the error below a reasonable level. The
poor results obtained when poles are not extracted affects to the
whole range of source-field point distances. Although we have
only shown results for , the same conclusions can be applied
to all the elements of the kernel of our integral equation, as the
authors have explicitly verified from many numerical tests. We
have also repeated these tests for different values ofand and
for more complex dielectric configurations. The conclusions are
identical.

Fig. 3. Dispersion curve of the fundamental mode of the thick microstrip
structure of the figure. Two different conductor cross section are considered.
(h = 0:635 mm,w = 3 mm, t = 0:3 mm," = 9:8).

As a first example of the application of the code based
on the theory in this paper, we have analyzed the structure
depicted in Fig. 3, i.e., a thick microstrip printed over the
substrate used in the example in Fig. 2. The thickness of the
conductor is mm. Fig. 3 shows the dispersion curves
of the fundamental mode of this microstrip structure when the
conductor is considered rectangular ( ) and trapezoidal
( ). Results for this structure have been previously
published in [10] (for a narrower range of frequencies) and [15].
The former makes use of a space-domain MPIE formulation,
but the spectral integrals are numerically computed. The latter
uses a boundary integral-equation technique in conjunction
with the method of moments. The results provided in [15]
are included in Fig. 3 (they are very close to those reported
in [10]). The agreement with our results is very good. In
[10], results are also presented for the particular case
mm (infinitely thin microstrip). The fundamental and higher
modes in the bound regime for such case have been also
reproduced with our code.

A structure printed on the same substrate and containing two
coupled thick strips has been also analyzed in [15]. This struc-
ture is shown in Fig. 4. The dispersion curves for the propagation
constants of the even and odd modes are plotted there. The data
reported in [15] are also included for comparison and excellent
agreement has been found. Axial and transverse components of
the current densities have been modeled by ten pulse and tri-
angle functions, respectively, over each conductor.

It is worth mentioning that the results presented in Figs. 3 and
4 can be obtained only if the surface-wave pole contribution is
removed before using complex images. Otherwise, results be-
come unstable when frequency increases, since the surface wave
poles contribution becomes important. In the particular example
studied here, this occurs when GHz for the first surface
wave pole ( ) and when GHz for the second pole
( ). Subsequent poles are important above 100 GHz.

To illustrate the performance of the method when dealing
with wire transmission lines, the results reported in [15] for
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Fig. 4. Propagation constant as a function of frequency for the even and odd
mode of two coupled microstrips. Data:h = 0:635 mm,w = 1 mm, t = 0:3

mm, " = 9:8.

Fig. 5. Dispersion curve for the fundamental mode of the structure in the
figure. Data:h = 3 mm,a = 0:75 mm," = 4, H = 4:5 mm.

the fundamental mode of the wire transmission line depicted in
Fig. 5 have been reproduced with our code. The circular con-
ductor has been approximated by an hexagon with the same
area. The axial component of the surface current density has
been modeled with ten pulse functions. Results are plotted in
Fig. 5 along with those reported in [15]. An excellent agreement
is observed once again.

As a final example, let us consider the three-conductor trans-
mission line studied by Hsuet al. in [14] by using the MPIE
scheme with numerical evaluation of the spectral integrals [14,
Fig. 8]. Three different conductor cross sections are considered:
trapezoidal, rectangular, and inverted trapezoidal. Fig. 6 shows
the dispersion curves of the three fundamental modes supported
by each three conductor system. Twelve basis functions over
each conductor have been used to obtain those results. Fig. 6 also
includes the results reported in [14], which agree very satisfacto-

Fig. 6. Dispersion curves of the three fundamental modes of the
transmission-line configurations (a)–(c) in [14, Fig. 8]. Symbols for
every configuration: our results formode 1: solid line; results from [14]: white
squares. Our results formode 2: dashed line; results from [14]: white triangles.
Our result formode 3: dots and dashes; results from [14]: white diamonds.
Quasi-static results obtained with the method reported in [3] are also included:
mode 1: grey squares; mode 2: grey triangles; mode 3: grey diamonds.

rily with ours. The low-frequency limit of the dispersion curves
have been checked against the results obtained by a highly ac-
curate quasi-TEM code [3] with very good agreement.

Finally, let us write a few words about CPU time consump-
tion. As it has been mentioned in this section, anad hocnumer-
ical integration scheme for obtaining the space-domain kernel
of the MPIE has been programmed so as to check the proposed
method. Although the numerical scheme takes into account the
special features of the integrands, for a given level of accuracy,
CPU times are always much shorter if the approach in this paper
is used. CPU time saving with respect numerical integration is
more relevant when the structure becomes more and more com-
plex. For the examples studied here, a reduction factor in CPU
time above ten has been found for all the cases.

IV. CONCLUSIONS

In this paper, the complex image method, originally intended
for 3-D problems, has been successfully adapted to handle the
guidance problem of open transmission lines with arbitrary
cross-sectional conductors on a layered substrate. It has been
proven that the correct performance of this technique in all
the range of frequencies requires to treat separately the sur-
face-wave contribution of the kernel of the integral equation.
An efficient method has been presented to take into account this
surface-wave contribution. These ideas have been implemented
into a MPIE formulation to solve for the multiconductor
problem. Nonuniform discretization is incorporated so as to
minimize the size of the matrix of moments. The calculation
of each element of this matrix has been also speeded up thanks
to a quasi-analytical evaluation of the reaction integrals. The
computer code based on this theory has been conveniently
checked against canonical examples published on the literature
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and against results provided by a computer code based on the
computation of the MPIE kernel by direct numerical integra-
tion. This program has made it possible to verify the relative
accuracy and numerical efficiency of the proposed approach.

APPENDIX A

We are faced with the problem of calculatingin (25). This
integral turns out to be the convolution of a exponential function
with a zeroth-order modified Bessel function of the second kind.
The modified Bessel function has a logarithmic singularity in
the origin that should be removed as follows:

(29)

where

(30)

(31)

The integrand in (31) includes the singularity of and,
therefore, it is advisable to avoid the numerical evaluation of
that integral. Splitting the integral into two terms to elimi-
nate the module in the argument of the exponential function and
changing variables, can be rewritten as

(32)

If use is made of the following result [29]:

(33)

where is the exponential integral function, the integralcan
be written in the following form:

(34)

Assuming that is a real variable (this is true only if we are
searching for real values of the propagation constant), we can
obtain a simpler expression for

(35)

In this way, in (31) is evaluated in closed form. In order to
calculate the integral , we express this integrand in a form
amenable to apply Laguerre quadratures

(36)

where

(37)

Since the integrand in (36) is smooth, only five or ten Laguerre
quadrature points suffice to obtain accurate results for. Sum-
ming up, the integral can be calculated in a efficient quasi-
closed form.

APPENDIX B

Here, the evaluation of the following integral:

(38)

is explained. This integral is necessary for the computation of
. From (24), it is clear that can be ex-

pressed as , where . To perform
this derivation over the convolution form of (25), the inte-
grand must be split into two terms to avoid the presence of the
module in the argument of the exponential function

(39)

can now be calculated by deriving the expression above

(40)

The integral (40) is split into two integrals having the same
form as those in (39). This makes it possible to use the results
obtained in Appendix A for to calculate . Extracting out
again the logarithmic singularity of the modified Bessel func-
tion, we can write

(41)

where

(42)

Note that (42) does not require new numeric calculation of the
exponential and exponential integral functions since the terms
already calculated in (34) can be easily reused here. In a similar
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way, a new application of the Laguerre quadratures is not neces-
sary to calculate since is split into the same two integrals
appearing in the computation of. Hence, no additional com-
putation effort is necessary to perform the integration (38) once
(25) has been calculated.
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